element_triangle_first.F90 Source File


This file depends on

sourcefile~~element_triangle_first.f90~~EfferentGraph sourcefile~element_triangle_first.f90 element_triangle_first.F90 sourcefile~element.f90 element.F90 sourcefile~element_triangle_first.f90->sourcefile~element.f90 sourcefile~core.f90 core.F90 sourcefile~element.f90->sourcefile~core.f90 sourcefile~input.f90 input.F90 sourcefile~element.f90->sourcefile~input.f90 sourcefile~allocate.f90 allocate.F90 sourcefile~core.f90->sourcefile~allocate.f90 sourcefile~check_range.f90 check_range.F90 sourcefile~core.f90->sourcefile~check_range.f90 sourcefile~deallocate.f90 deallocate.F90 sourcefile~core.f90->sourcefile~deallocate.f90 sourcefile~error.f90 error.F90 sourcefile~core.f90->sourcefile~error.f90 sourcefile~fortran_utils.f90 fortran_utils.F90 sourcefile~core.f90->sourcefile~fortran_utils.f90 sourcefile~string_utils.f90 string_utils.F90 sourcefile~core.f90->sourcefile~string_utils.f90 sourcefile~types.f90 types.F90 sourcefile~core.f90->sourcefile~types.f90 sourcefile~unique.f90 unique.F90 sourcefile~core.f90->sourcefile~unique.f90 sourcefile~vtk.f90 vtk.F90 sourcefile~core.f90->sourcefile~vtk.f90 sourcefile~vtk_constants.f90 vtk_constants.F90 sourcefile~core.f90->sourcefile~vtk_constants.f90 sourcefile~input_interface.f90 input_interface.F90 sourcefile~input.f90->sourcefile~input_interface.f90 sourcefile~allocate.f90->sourcefile~error.f90 sourcefile~deallocate.f90->sourcefile~error.f90 sourcefile~memory_stats_wrapper.f90 memory_stats_wrapper.F90 sourcefile~fortran_utils.f90->sourcefile~memory_stats_wrapper.f90 sourcefile~signal_flag_wrapper.f90 signal_flag_wrapper.F90 sourcefile~fortran_utils.f90->sourcefile~signal_flag_wrapper.f90 sourcefile~system_info_wrapper.f90 system_info_wrapper.F90 sourcefile~fortran_utils.f90->sourcefile~system_info_wrapper.f90 sourcefile~input_interface.f90->sourcefile~core.f90 sourcefile~project_settings.f90 project_settings.F90 sourcefile~input_interface.f90->sourcefile~project_settings.f90 sourcefile~string_utils.f90->sourcefile~allocate.f90 sourcefile~array.f90 array.F90 sourcefile~types.f90->sourcefile~array.f90 sourcefile~gauss.f90 gauss.F90 sourcefile~types.f90->sourcefile~gauss.f90 sourcefile~pointer.f90 pointer.F90 sourcefile~types.f90->sourcefile~pointer.f90 sourcefile~variable.f90 variable.F90 sourcefile~types.f90->sourcefile~variable.f90 sourcefile~vector.f90 vector.F90 sourcefile~types.f90->sourcefile~vector.f90 sourcefile~unique.f90->sourcefile~allocate.f90 sourcefile~vtk.f90->sourcefile~allocate.f90 sourcefile~vtk.f90->sourcefile~deallocate.f90 sourcefile~vtk.f90->sourcefile~unique.f90 sourcefile~vtk.f90->sourcefile~vtk_constants.f90 sourcefile~vtk.f90->sourcefile~array.f90 sourcefile~vtk_wrapper.f90 vtk_wrapper.F90 sourcefile~vtk.f90->sourcefile~vtk_wrapper.f90 sourcefile~vtu_wrapper.f90 vtu_wrapper.F90 sourcefile~vtk.f90->sourcefile~vtu_wrapper.f90 sourcefile~array.f90->sourcefile~allocate.f90 sourcefile~array.f90->sourcefile~deallocate.f90 sourcefile~c_utils.f90 c_utils.F90 sourcefile~memory_stats_wrapper.f90->sourcefile~c_utils.f90 sourcefile~project_settings.f90->sourcefile~core.f90 sourcefile~signal_flag.f90 signal_flag.F90 sourcefile~signal_flag_wrapper.f90->sourcefile~signal_flag.f90 sourcefile~system_info_wrapper.f90->sourcefile~c_utils.f90 sourcefile~variable.f90->sourcefile~allocate.f90 sourcefile~c_utils.f90->sourcefile~signal_flag.f90 sourcefile~memory_stats.f90 memory_stats.F90 sourcefile~c_utils.f90->sourcefile~memory_stats.f90 sourcefile~system_info.f90 system_info.F90 sourcefile~c_utils.f90->sourcefile~system_info.f90

Source Code

submodule(domain_element) domain_element_triangle_first
    implicit none
contains
    !----------------------------------------------------------------------!
    ! triangle_first_Construct:
    !----------------------------------------------------------------------!
    ! This function constructs a triangle_first element object based on the
    ! given element index, global nodal coordinates, connectivity, and
    ! spatial dimension type.
    !
    ! Arguments:
    !   id             : Element index (int32).
    !                       Identifies the target element.
    !
    !   global_coordinate : type_dp_3d type pointer containing the global coordinates
    !                       of all nodes in the mesh.
    !
    !   Connectivity      : Integer array (size 3) specifying the indices of
    !                       nodes that form the triangular element.
    !
    ! Return Value:
    !   element         : Allocated polymorphic object of type
    !                       triangle_first (extends Abstract_ElementType).
    !
    ! Function Details:
    !   - Allocates a new triangle_first element object.
    !   - Stores element ID and connectivity information.
    !   - Links to the corresponding global coordinates for each node.
    !   - Initializes Gauss point and weight for integration.
    !
    !----------------------------------------------------------------------!
    module function construct_triangle_first(id, global_coordinate, cell_info, integration) result(element)
        implicit none
        integer(int32), intent(in) :: id
        type(type_dp_3d), pointer, intent(in) :: global_coordinate
        type(type_vtk_cell), intent(in) :: cell_info
        type(type_geometry_settings), intent(in) :: integration
        class(abst_element), allocatable :: element

        integer(int32) :: i

        if (allocated(element)) deallocate (element)
        allocate (type_triangle_first :: element)

        element%id = id
        element%type = cell_info%cell_type
        element%group = cell_info%cell_entity_id
        element%dimension = cell_info%get_dimension()
        element%order = cell_info%get_order()

        element%num_nodes = cell_info%num_nodes_in_cell
        allocate (element%connectivity(element%num_nodes))
        element%connectivity(:) = cell_info%connectivity(1:element%num_nodes)

        allocate (element%x(element%num_nodes))
        allocate (element%y(element%num_nodes))
        allocate (element%z(element%num_nodes))
        do i = 1, element%num_nodes
            nullify (element%x(i)%val)
            nullify (element%y(i)%val)
            nullify (element%z(i)%val)
            element%x(i)%val => global_coordinate%x(element%connectivity(i))
            element%y(i)%val => global_coordinate%y(element%connectivity(i))
            element%z(i)%val => global_coordinate%z(element%connectivity(i))
        end do

        select case (integration%integration_type)
        case ("full")
            element%num_gauss = 1_int32
            call allocate_array(element%weight, element%num_gauss)
            call allocate_array(element%gauss, element%dimension, element%num_gauss)
            element%weight(:) = [0.5d0]
            element%gauss(:, 1) = [1.0d0 / 3.0d0, 1.0d0 / 3.0d0]
        case ("reduced")
            call global_logger%log_warning(message="Reduced-type integration is not implemented for first order triangles.")
            element%num_gauss = 1_int32
            call allocate_array(element%weight, element%num_gauss)
            call allocate_array(element%gauss, element%dimension, element%num_gauss)
            element%weight(:) = [0.5d0]
            element%gauss(:, 1) = [1.0d0 / 3.0d0, 1.0d0 / 3.0d0]
        case ("free")
            call global_logger%log_warning(message="Free-type integration is not implemented for first order triangles.")
            element%num_gauss = 1_int32
            call allocate_array(element%weight, element%num_gauss)
            call allocate_array(element%gauss, element%dimension, element%num_gauss)
            element%weight(:) = [0.5d0]
            element%gauss(:, 1) = [1.0d0 / 3.0d0, 1.0d0 / 3.0d0]
        end select

        ! Initialize the interpolation function pointer
        if (associated(element%interpolate)) nullify (element%interpolate)
        element%interpolate => interpolate

        if (associated(element%get_connectivity)) nullify (element%get_connectivity)
        element%get_connectivity => get_connectivity

    end function construct_triangle_first

    !----------------------------------------------------------------------!
    ! getNumNodes_triangle_first:
    !----------------------------------------------------------------------!
    ! This function returns the number of nodes associated with a
    ! triangle_first element.
    !
    ! Arguments:
    !   self : triangle_first type object.
    !          Represents the current triangular element instance.
    !
    ! Return Value:
    !   n    : Integer (int32) indicating the number of nodes used by the
    !          element. This is typically 3 for a linear triangle.
    !
    ! Function Details:
    !   - Retrieves the value stored in `self%size`, which represents
    !     the number of nodes for the element.
    !
    !----------------------------------------------------------------------!
    module function get_id_triangle_first(self) result(id)
        implicit none
        class(type_triangle_first), intent(in) :: self
        integer(int32) :: id

        id = self%id
    end function get_id_triangle_first

    module function get_type_triangle_first(self) result(type)
        implicit none
        class(type_triangle_first), intent(in) :: self
        integer(int32) :: type

        type = self%type
    end function get_type_triangle_first

    module function get_num_nodes_triangle_first(self) result(num_nodes)
        implicit none
        class(type_triangle_first), intent(in) :: self
        integer(int32) :: num_nodes

        num_nodes = self%num_nodes
    end function get_num_nodes_triangle_first

    module function get_group_triangle_first(self) result(group)
        implicit none
        class(type_triangle_first), intent(in) :: self
        integer(int32) :: group

        group = self%group
    end function get_group_triangle_first

    module function get_dimension_triangle_first(self) result(dimension)
        implicit none
        class(type_triangle_first), intent(in) :: self
        integer(int32) :: dimension

        dimension = self%dimension
    end function get_dimension_triangle_first

    module function get_order_triangle_first(self) result(order)
        implicit none
        class(type_triangle_first), intent(in) :: self
        integer(int32) :: order

        order = self%order
    end function get_order_triangle_first

    module function get_num_gauss_triangle_first(self) result(num_gauss)
        implicit none
        class(type_triangle_first), intent(in) :: self
        integer(int32) :: num_gauss

        num_gauss = self%num_gauss
    end function get_num_gauss_triangle_first

    !----------------------------------------------------------------------!
    ! psi_triangle_first:
    !----------------------------------------------------------------------!
    ! This function evaluates the shape function ψ_i(ξ, η) for a linear
    ! triangular element at the given natural coordinates (ξ, η).
    !
    ! Arguments:
    !   self : triangle_first type object.
    !          Represents the triangular element for which the shape
    !          function is evaluated.
    !
    !   i    : Integer (int32), index of the shape function (i = 1 ~ 3).
    !          Each index corresponds to a vertex of the triangle.
    !
    !   xi   : Real(real64), the ξ coordinate in the natural coordinate
    !          system.
    !
    !   eta  : Real(real64), the η coordinate in the natural coordinate
    !          system.
    !
    ! Return Value:
    !   psi  : Real(real64), value of the i-th shape function ψ_i at (ξ, η).
    !
    ! Function Details:
    !   - For a linear triangular element, the shape functions are:
    !       ψ₁(ξ, η) = ξ
    !       ψ₂(ξ, η) = η
    !       ψ₃(ξ, η) = 1 - ξ - η
    !   - Returns 0.0d0 for indices outside the range [1, 3].
    !
    !----------------------------------------------------------------------!
    module function psi_triangle_first(self, i, xi, eta) result(psi)
        implicit none
        class(type_triangle_first), intent(in) :: self
        integer(int32), intent(in) :: i
        real(real64), intent(in) :: xi, eta
        real(real64) :: psi
        select case (i)
        case (1)
            psi = xi
        case (2)
            psi = eta
        case (3)
            psi = 1.0d0 - xi - eta
        case default
            psi = 0.0d0
        end select
    end function psi_triangle_first

    !----------------------------------------------------------------------!
    ! dpsi_dxi_triangle_first:
    !----------------------------------------------------------------------!
    ! This function evaluates the partial derivative ∂ψ_i/∂ξ of the i-th
    ! shape function for a linear triangular element with respect to ξ
    ! at a given η coordinate.
    !
    ! Arguments:
    !   self : triangle_first type object.
    !          Represents the triangular element for which the derivative
    !          is being evaluated.
    !
    !   i    : Integer (int32), index of the shape function (i = 1 ~ 3).
    !
    !
    !   xi   : Real(real64), the ξ coordinate in the natural coordinate
    !          system (not used in linear case, but included for interface).
    !
    !   eta  : Real(real64), the η coordinate in the natural coordinate
    !          system (not used in linear case, but included for interface).
    !
    ! Return Value:
    !   dpsi : Real(real64), value of ∂ψ_i/∂ξ evaluated at (ξ, η).
    !
    ! Function Details:
    !   - For a linear triangle element:
    !       ∂ψ₁/∂ξ =  1.0
    !       ∂ψ₂/∂ξ =  0.0
    !       ∂ψ₃/∂ξ = -1.0
    !   - Returns 0.0d0 for indices outside [1, 3].
    !
    !----------------------------------------------------------------------!
    module function dpsi_dxi_triangle_first(self, i, xi, eta) result(dpsi)
        implicit none
        class(type_triangle_first), intent(in) :: self
        integer(int32), intent(in) :: i
        real(real64), intent(in) :: xi, eta
        real(real64) :: dpsi
        select case (i)
        case (1)
            dpsi = 1.0d0
        case (2)
            dpsi = 0.0d0
        case (3)
            dpsi = -1.0d0
        case default
            dpsi = 0.0d0
        end select
    end function dpsi_dxi_triangle_first

    !----------------------------------------------------------------------!
    ! dpsi_deta_triangle_first:
    !----------------------------------------------------------------------!
    ! This function evaluates the partial derivative ∂ψ_i/∂η of the i-th
    ! shape function for a linear triangular element with respect to η
    ! at a given ξ coordinate.
    !
    ! Arguments:
    !   self : triangle_first type object.
    !          Represents the triangular element for which the derivative
    !          is being evaluated.
    !
    !   i    : Integer (int32), index of the shape function (i = 1, 2, 3).
    !
    !   xi   : Real(real64), the ξ coordinate in the natural coordinate
    !          system (not used in linear case, but included for interface).
    !
    !   eta  : Real(real64), the η coordinate in the natural coordinate
    !          system (not used in linear case, but included for interface).
    !
    ! Return Value:
    !   dpsi : Real(real64), value of ∂ψ_i/∂η evaluated at (ξ, η).
    !
    ! Function Details:
    !   - For a linear triangle element:
    !       ∂ψ₁/∂η =  0.0
    !       ∂ψ₂/∂η =  1.0
    !       ∂ψ₃/∂η = -1.0
    !   - Returns 0.0d0 for indices outside [1, 3].
    !
    !----------------------------------------------------------------------!
    module function dpsi_deta_triangle_first(self, i, xi, eta) result(dpsi)
        implicit none
        class(type_triangle_first), intent(in) :: self
        integer(int32), intent(in) :: i
        real(real64), intent(in) :: xi, eta
        real(real64) :: dpsi
        select case (i)
        case (1)
            dpsi = 0.0d0
        case (2)
            dpsi = 1.0d0
        case (3)
            dpsi = -1.0d0
        case default
            dpsi = 0.0d0
        end select
    end function dpsi_deta_triangle_first

    !----------------------------------------------------------------------!
    ! jacobian_triangle_first:
    !----------------------------------------------------------------------!
    ! This function computes the (i,j) component of the Jacobian matrix J
    ! for a linear triangular finite element at a given natural coordinate
    ! (ξ, η). The Jacobian maps natural coordinates (ξ, η) to physical
    ! coordinates (x, y).
    !
    ! Arguments:
    !   self : triangle_first type object.
    !          Represents the element whose Jacobian is being evaluated.
    !
    !   i    : Integer (int32), the row index of the Jacobian component.
    !          i = 1 → corresponds to x-component (dx/dξ or dx/dη),
    !          i = 2 → corresponds to y-component (dy/dξ or dy/dη).
    !
    !   j    : Integer (int32), the column index of the Jacobian component.
    !          j = 1 → partial derivative w.r.t ξ,
    !          j = 2 → partial derivative w.r.t η.
    !
    !   xi   : Real(real64), ξ coordinate in natural coordinate system.
    !
    !   eta  : Real(real64), η coordinate in natural coordinate system.
    !
    ! Return Value:
    !   Jval : Real(real64), the (i,j) component of the Jacobian matrix.
    !
    ! Function Details:
    !   - The Jacobian matrix J is a 2×2 matrix defined as:
    !         [ ∂x/∂ξ  ∂x/∂η ]
    !         [ ∂y/∂ξ  ∂y/∂η ]
    !
    !   - Each entry is computed as a weighted sum over the shape function
    !     derivatives with respect to ξ or η, multiplied by the physical
    !     coordinates (X or Y) of the element's nodes.
    !
    !   - The derivatives of shape functions are accessed via:
    !         self%dpsi_dxi(ii, eta)
    !         self%dpsi_deta(ii, xi)
    !
    !   - For example:
    !       ∂x/∂ξ = Σ (∂ψ_i/∂ξ) * x_i
    !       ∂y/∂η = Σ (∂ψ_i/∂η) * y_i
    !
    !   - This function supports 2D problems.
    !
    !----------------------------------------------------------------------!
    module function jacobian_triangle_first(self, i, j, xi, eta) result(Jval)
        implicit none
        class(type_triangle_first), intent(in) :: self
        integer(int32), intent(in) :: i, j
        real(real64), intent(in) :: xi, eta

        real(real64) :: Jval
        integer(int32) :: ii, jlocal

        Jval = 0
        !! dx
        select case (i)
        case (1)
            select case (j)
            case (1)
                !! dx_dxi
                do ii = 1, self%num_nodes
                    Jval = Jval + self%dpsi_dxi(ii, xi, eta) * self%x(ii)%val
                end do
            case (2)
                !! dx_deta
                do ii = 1, self%num_nodes
                    Jval = Jval + self%dpsi_deta(ii, xi, eta) * self%x(ii)%val
                end do
            end select

        !! dy
        case (2)
            select case (j)
            case (1)
                !! dy_dxi
                do ii = 1, self%num_nodes
                    Jval = Jval + self%dpsi_dxi(ii, xi, eta) * self%y(ii)%val
                end do
            case (2)
                !! dy_deta
                do ii = 1, self%num_nodes
                    Jval = Jval + self%dpsi_deta(ii, xi, eta) * self%y(ii)%val
                end do
            end select
        end select

    end function jacobian_triangle_first

    !----------------------------------------------------------------------!
    ! jacobian_det_triangle_first:
    !----------------------------------------------------------------------!
    ! This function computes the determinant of the Jacobian matrix J
    ! for a linear triangular element at a specified point (ξ, η) in
    ! the natural coordinate system.
    !
    ! Arguments:
    !   self : triangle_first type object.
    !          Represents the finite element whose Jacobian is evaluated.
    !
    !   xi   : Real(real64), ξ coordinate in the natural coordinate system.
    !
    !   eta  : Real(real64), η coordinate in the natural coordinate system.
    !
    ! Return Value:
    !   J_Det : Real(real64), the determinant of the Jacobian matrix J.
    !
    ! Function Details:
    !   - The Jacobian matrix J is a 2×2 matrix defined as:
    !         [ ∂x/∂ξ  ∂x/∂η ]
    !         [ ∂y/∂ξ  ∂y/∂η ]
    !
    !   - The determinant is calculated using:
    !         det(J) = (∂x/∂ξ)(∂y/∂η) - (∂x/∂η)(∂y/∂ξ)
    !
    !   - This determinant gives the area scaling factor for transformation
    !     from natural to physical coordinates and is used in numerical
    !     integration (e.g., Gauss quadrature) on the element.
    !
    !   - A zero or negative determinant typically indicates a problem
    !     with the element geometry (e.g., inverted element).
    !
    !----------------------------------------------------------------------!
    module function jacobian_det_triangle_first(self, xi, eta) result(J_Det)
        implicit none
        class(type_triangle_first), intent(in) :: self
        real(real64), intent(in) :: xi, eta
        real(real64) :: J_Det

        real(real64) :: dx_xi, dx_eta
        real(real64) :: dy_xi, dy_eta

        integer(int32) :: i

        dx_xi = self%jacobian(1, 1, xi, eta)
        dx_eta = self%jacobian(1, 2, xi, eta)
        dy_xi = self%jacobian(2, 1, xi, eta)
        dy_eta = self%jacobian(2, 2, xi, eta)

        J_Det = dx_xi * dy_eta - dx_eta * dy_xi
    end function jacobian_det_triangle_first

    !----------------------------------------------------------------------!
    ! is_in_triangle_first:
    !----------------------------------------------------------------------!
    ! This function checks if the given physical coordinates (px, py) lie
    ! within the boundaries of a square element.
    ! The function uses a reverse mapping (Newton-Raphson method) to map
    ! the physical coordinates to natural coordinates (ξ, η) and then
    ! checks if the point lies within the square element.
    !
    ! Arguments:
    !   self  : triangle_first type object.
    !
    !   px    : x-coordinate (real64 type) in the physical coordinate system.
    !           This coordinate is checked to see if it lies inside the square element.
    !
    !   py    : y-coordinate (real64 type) in the physical coordinate system.
    !           This coordinate is checked to see if it lies inside the square element.
    !
    ! Return Value:
    !   is_in : .true. if the point lies within the square element,
    !           .false. otherwise.
    !           The function also returns .false. if the Newton-Raphson method
    !           does not converge or if the natural coordinates fall outside
    !           the square element's domain.
    !
    ! Algorithm:
    !   - The function uses the Newton-Raphson method to map the physical
    !     coordinates (px, py) to the natural coordinates (ξ, η).
    !   - The function then checks if the natural coordinates (ξ, η) are
    !     within the valid range [-1, 1]. If they are, the point is inside
    !     the square element.
    !   - If the method does not converge, or the natural coordinates fall
    !     outside the valid range, the function returns .false.
    !
    !----------------------------------------------------------------------!
    module subroutine is_in_triangle_first(self, px, py, pxi, peta, is_in)
        class(type_triangle_first), intent(in) :: self
        real(real64), intent(in) :: px, py
        real(real64), intent(inout) :: pxi, peta
        logical, intent(inout) :: is_in

        real(real64) :: xi, eta
        real(real64) :: x0, y0
        real(real64) :: dx_xi, dx_eta, dy_xi, dy_eta
        real(real64) :: detJ
        real(real64) :: dx, dy
        integer(int32) :: iter, max_iter
        real(real64) :: tol
        integer(int32) :: i
        logical :: converged

        ! 初期化
        xi = 0.0d0
        eta = 0.0d0
        tol = 1.0d-15
        max_iter = 100
        converged = .false.

        ! Newton-Raphson 法による逆写像
        do iter = 1, max_iter
            x0 = 0.0d0
            y0 = 0.0d0

            do i = 1, self%num_nodes
                x0 = x0 + self%psi(i, xi, eta) * self%x(i)%val
                y0 = y0 + self%psi(i, xi, eta) * self%y(i)%val
            end do

            dx = px - x0
            dy = py - y0

            if (sqrt(dx * dx + dy * dy) < tol) then
                converged = .true.
                exit
            end if

            dx_xi = self%jacobian(1, 1, xi, eta)
            dx_eta = self%jacobian(1, 2, xi, eta)
            dy_xi = self%jacobian(2, 1, xi, eta)
            dy_eta = self%jacobian(2, 2, xi, eta)

            detJ = self%jacobian_det(xi, eta)
            if (abs(detJ) < 1.0d-20) exit ! ヤコビ行列の特異性チェック

            ! Newton-Raphson 更新
            xi = xi + (dy_eta * dx - dx_eta * dy) / detJ
            eta = eta + (-dy_xi * dx + dx_xi * dy) / detJ
        end do

        ! 最終判定:収束かつ自然座標が範囲内
        is_in = converged .and. (xi >= 0.0d0) .and. (eta >= 0.0d0) .and. (xi + eta <= 1.0d0)

        if (is_in) then
            pxi = xi
            peta = eta
        end if
    end subroutine is_in_triangle_first

    module function interpolate_triangle_first(self, xi, eta, value) result(interpolated_value)
        implicit none
        class(abst_element), intent(in) :: self
        real(real64), intent(in) :: xi, eta
        real(real64), intent(in) :: value(:)
        real(real64) :: interpolated_value
        integer(int32) :: i

        interpolated_value = 0.0d0
        do i = 1, self%num_nodes
            interpolated_value = interpolated_value + self%psi(i, xi, eta) * value(self%connectivity(i))
        end do

    end function interpolate_triangle_first

    module function interpolate_reordered_triangle_first(self, xi, eta, value) result(interpolated_value)
        implicit none
        class(abst_element), intent(in) :: self
        real(real64), intent(in) :: xi, eta
        real(real64), intent(in) :: value(:)
        real(real64) :: interpolated_value
        integer(int32) :: i

        interpolated_value = 0.0d0
        do i = 1, self%num_nodes
            interpolated_value = interpolated_value + self%psi(i, xi, eta) * value(self%connectivity_reordered(i))
        end do

    end function interpolate_reordered_triangle_first

end submodule domain_element_triangle_first